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Abstract. Modern spectroscopic data on the light non-strange meson spectrum is analyzed. It is argued that
the observed regularities of the experimental spectrum for highly excited states favour a partial restoration
of all approximate classical symmetries of a QCD Lagrangian (conformal, chiral and axial) broken by
quantum corrections. The rate of restoration of classical symmetries is estimated. The dependence of the
resonance widths on the corresponding masses is systematically checked. On average, it turns out to be
universal for high excitations as predicted by the effective string description.

PACS. 12.38.Aw General properties of QCD (dynamics, confinement, etc.) – 12.38.Qk Experimental tests
– 14.40.-n Mesons

1 Introduction

The study of hadron resonances is of great importance
for a deeper understanding of strong interactions. As the
stable hadronic matter consists of up- and down-quarks,
the resonances built up of these quarks are of a special
interest. It is well known that masses of up- and down-
quarks are very light (of the order of 5MeV) in comparison
with typical hadron masses (of the order 1000MeV). Thus,
with a good accuracy one can neglect them. In this mass-
less limit strong interactions are chirally invariant in the
two-flavor sector. The chiral SU(2)L×SU(2)R invariance
is not a symmetry of the physical vacuum. This results
in the spontaneous Chiral Symmetry Breaking (CSB) to
the vector isospin subgroup SU(2)V and in the appear-
ance of massless Goldstone bosons, the π-mesons. For this
reason, the chiral symmetry is not seen in the hadronic
spectrum. The vector ρ(770)- and axial a1(1230)-mesons
represent a typical textbook example. Another example
is the axial U(1)A symmetry broken by chiral anomaly.
This phenomenon is known to enhance significantly the
mass of the η′-meson. However, all such examples refer to
ground states only, whereas the higher radial and orbital
excitations are usually avoided in QCD textbooks.

The classical QCD action in the chiral limit has also a
symmetry with respect to the scale transformations stem-
ming from the absence of dimensionful constants. The
scale invariance is part of a larger conformal group. At the
quantum level this symmetry is broken by scale anomaly.
At high energies the conformal symmetry of QCD is, how-
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ever, restored due to the asymptotic freedom. In particu-
lar, the scaling laws of the parton model can be derived di-
rectly from the conformal symmetry of the classical QCD
Lagrangian. In recent years, it was understood that this
fact provides one with powerful tools in practical calcula-
tions: The structure of perturbative predictions for light-
cone–dominated processes reveals the underlying confor-
mal symmetry of the QCD Lagrangian, see [1] for a re-
view. This property turned out to be crucial in connection
with the conjecture about AdS/CFT correspondence [2]
in application to QCD, which attracted a lot of interest
recently.

The conformal symmetry is incompatible with the ex-
istence of resonances at certain energies because the spec-
trum has to be scale invariant in this case. However, be-
tween the low-energy region, where the scale symmetry is
badly violated, and the scale-invariant high-energy con-
tinuum there is an intermediate-energy region, where the
resonances still exist but the conformal invariance should
be partially restored. This raises an interesting problem:
How does the partial restoration of conformal symmetry
influence the meson spectrum?

It has been suspected for long ago that QCD is dual to
some string theory. The term “duality” is commonly used
when some phenomena can be described by two theories
and the strong-coupling regime of one of them corresponds
to the weak-coupling regime of the other one. There are
examples of such duality in two-dimensional field theories.
For four dimensions duality is usually only a hypothesis,
which gives, however, a powerful tool for deriving various
predictions. The large-Nc limit of QCD [3] provides, in a
sense, a particular realization of certain duality: The the-



328 The European Physical Journal A

ory of strongly interacting quarks and gluons is rewritten
as a theory of weakly interacting mesons and glueballs,
with baryons being the solitons in this dual theory. The
two-point correlators can be then rewritten as a sum over
meson contributions,

〈J(p)J(−p)〉 =
∑

n

f2
n

p2 −m2
n

∼ Nc log p
2, (1)

where fn = 〈0|J |n〉 ∼ O(
√
Nc) are meson couplings. The

logarithm in the r.h.s. of eq. (1) comes from the perturba-
tion theory leading order (the so-called parton model log-
arithm) and it is related with the conformal invariance of
classical QCD. Obviously, to reproduce this logarithm one
needs an infinite number of states, provided the existence
of confinement in the large-Nc limit. Hence, an infinite
number of narrow (Γ = O(1/Nc)) meson states is dual,
at least, to the leading order of the perturbation theory,
which is governed by the underlying conformal symmetry
of QCD. On the other hand, there are many arguments
that QCD in the large-Nc limit is dual to some (still un-
known) string theory. A reason for such a belief is, for
instance, the fact that the planar expansion in powers of
1/Nc is much reminiscent of perturbative expansion in the
string theory; both expansions have a topological nature.

Thus, QCD is believed to have some string dual and
the large-Nc limit strongly supports this belief. Any self-
consistent string theory possesses conformal invariance.
The approximate conformal symmetry of QCD at the tree
level gives a hope to find this string dual, at least in some
kinematic regime. But what is then a signature of ap-
proaching to this regime for the light meson spectrum?
Probably, the reply is that the spectrum should get rem-
iniscent of that given by the string dual. The conformal
symmetry is crucial in making this correspondence. This
gives an idea for a mechanism of how the partial restora-
tion of scale invariance influences the spectrum. The quasi-
classical string approaches typically give the following law
for the light meson spectrum: m2(n, J) ∼ n + J , where
n is the principal (radial) quantum number and J is the
spin. This spectrum is provided by the Veneziano type of
strings. Hence, the QCD string dual, probably, represents
a modification of à la Veneziano string with a similar spec-
trum. A special feature of this spectrum is that it predicts
the clustering of states with different n and J near certain
equidistant values of masses squared defined by the sum
n+ J . Thus, if one experimentally observes a tendency to
such a clustering, this phenomenon could be interpreted
as a manifestation of the partial restoration of conformal
invariance of the underlying fundamental theory.

In principle, the corresponding physics can be figured
out without exploiting the string ideas. If some “rest” of
conformal symmetry is indeed realized in the meson spec-
trum, then the physical states must fill out the correspond-
ing group representations with degenerate masses inside
one multiplet. Experimentally, these multiplets should be
then observed as clusters of states near some values of
energy. Unfortunately, it seems that nothing is known on
this subject.

Motivated by these discussions, in the present paper
we address to the problem of relations between the exper-
imental spectrum of light non-strange mesons and approx-
imate classical symmetries of QCD broken at the quantum
level.

The paper is organized as follows. The details of phe-
nomenological analysis are given in sect. 2. Sections 3
and 4 are devoted to the interpretation of observed regu-
larities for the masses and decay widths correspondingly.
We conclude in sect. 5.

2 Experimental spectrum

The radial and orbital excitations were only poorly known
in the time of fast development of QCD in the 70s. Since
that time the experimental data has been accumulating
and now the Particle Data Group (PDG) [4] lists a cer-
tain number of well-established higher excitations in the
light non-strange meson sector (we will denote these states
n̄n) up to the energy of 1.9GeV. At higher energies PDG
enumerates only a few confirmed mesons and many un-
confirmed states. At present it is difficult to draw any
direct conclusions about general properties of meson ex-
citations based on the well-confirmed states of PDG only.
To reveal these properties we propose an indirect way: to-
gether with well-confirmed states one can analyse many
unconfirmed (more precisely, not well-confirmed) states.
As usually happens in a large statistical ensemble, one
can hope that possible errors in different channels smooth
each other providing finally a stable general picture, which
can be described by some mean characteristics.

Since PDG cites so many unconfirmed states it is easy
to go astray in searching for regularities. To avoid this, one
inevitably should stick to some reasonable principles. Let
us explain how we choose the unconfirmed resonances for
the analysis. First, for reliability we will take only those
states which were observed at least in two different reac-
tions. Thus, we will deal with the “not well-confirmed”
mesons rather than with the “unconfirmed” ones. Second,
at energy above 1.9GeV we will use the data of the Crystal
Barrel Collaboration on proton-antiproton (p̄p) annihila-
tion in flight. The latest review of this data is contained
in ref. [5]. The reasons for this choice are as follows:

1. It is the only experiment which performed a systematic
study of the mass range 1.9–2.4GeV. The coverage of
this mass range from other experiments is very limited.

2. As a rule the states were independently observed in
different channels, i.e. they are quite reliable. The rea-
son why most of them are listed by PDG in a section
“Other Light Unflavoured Mesons” is that PDG re-
quires confirmation from a separate experiment. The
appearance of other states in this section usually has
a rather sporadic character.

3. As was realized long ago [6], meson resonances are
strongly coupled to the N̄N reactions because mesons
have the quantum numbers of the N̄N system. The
dominant role of this system in the dynamics of meson
states makes the data extracted from the N̄N reac-
tions quite reliable.
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4. A possible admixture of strange quarks is a serious
problem for any classification of light states. A fea-
ture of p̄p annihilation is that the production of the
s̄s component is strongly suppressed. Consequently, it
is quite reliable that the discovered states are, except
some rare cases, genuine n̄n-mesons.

5. The obtained spectrum (first systematized in ref. [7])
turned out to be in full agreement with the old theo-
retical expectations from the hadron string models and
the low-energy amplitudes [8]. Namely,
a) linearity of Regge trajectories;
b) equidistance of daughter Regge trajectories (linear-

ity of radial Regge trajectories), as a consequence,
approximate universality of slopes of trajectories;

c) the intercept of the pion Regge trajectory is ap-
proximately equal to 0 and the intercept of the ρ-
meson one is 0.5;

d) the slope of the radial Regge trajectories is about
2m2

ρ, which is also consistent with the lattice cal-
culations (see, e.g., [9]).

6. To reveal the general properties of the spectrum it is
preferable to use the data of an individual systematic
experiment. Only after that the overall picture should
be compared with the one given by another system-
atic experiment. This type of comparison can lead to
some global shifts but does not spoil the picture qual-
itatively. If one first performs the data averaging (as
it is done by PDG), the errors accumulate rapidly and
the final picture can be completely obscured. The case
of light non-strange baryons is a good example: If one
separately uses the data of individual systematic ex-
periments (say, going under the names “Cutkosky” or
“Hoehler” in PDG) the multispin-parity clusters of
states are unambiguously seen, but if one takes the
averaged data of PDG the clustering gets rather con-
troversial.

After these general arguments let us pass to the anal-
ysis. As said above, we do not consider the states with a
large admixture of strange quarks (usually, it is clear from
the analysis of corresponding decay channels) and we omit
all states which were observed in one channel only (al-
though many of them fill well the missing states on meson
trajectories). In review [5] the latter states are: ω(2205),
a1(1930), a1(2270), a2(1950), a2(2175), ω4(2250), b5(2500)
and f6(2485). For the same reasons, we omit h1(1595) and
b1(1620) (see [5] for references). We do not use π2(1880)
and η2(1870) which were cited in [5] and were shown to be
inconsistent with the n̄n state. Similarly, we omit f0(2100)
from [5], which is either a glueball or a s̄s state strongly
mixed with n̄n. The very narrow ρ(1900) cited by PDG [4]
(in the list of unconfirmed states) is also not considered
since there are many doubts that it is a real resonance.
The only well-confirmed states of PDG which are exotic
for the quark model are π1-mesons, namely π1(1400) and
π1(1600). The state π1(2015) was seen in two reactions.
We decided to include them into analysis because at least
the first two of them are generally recognized observable
resonances. We also include f0(980) and a0(980) although
the nature of these states is still controversial, presumably

they have a large admixture of strange quark (see, e.g., the
note on the scalar mesons in ref. [4]). The reason will be
explained below. The state η(547) has a large admixture
of strange component. Nevertheless, this admixture does
not seem to be dominant in the corresponding radial ex-
citations. For this reason, the η-meson is also considered.

Let us explain how we display the data. First, in the
relativistic theories one deals with (masses)2 which ap-
pear in the multiplets, Regge and string theory etc., and
only these quantities are of theoretical interest. Second, it
is better to normalize all masses to some typical hadron
mass. In our opinion, the best candidate for the normal-
ization is the mass of the ρ-meson.

The final picture of the meson spectrum resulting from
our analysis is displayed in fig. 1. The corresponding ex-
perimental data is given in table 1.

A well-pronounced feature of the spectrum is that
the observed states cluster at about some values of en-
ergy [5,10]. A similar phenomenon exists in the light non-
strange baryons [11]. The clustering occurs at approxi-
mately 1.33, 1.70, 2.00 and 2.27GeV. Some channels have
additional states denoted by open circles or strips in fig. 1.
They appear because the states in these channels can be
created by different orbital momenta which result in dou-
bling of the corresponding radial Regge trajectories [7].
For ρ and f2 mesons there is polarization data which sep-
arates the S-wave from the D-wave and the P -wave from
the F -wave states correspondingly [5]. For other chan-
nels such separation is tentative and new experiments are
called for.

For the clusters we display in table 1 the mean mass
M̄ and the mean full decay width Γ̄ , which are defined as
follows,

M̄ ≡
√

1

k

∑

k

m2
k , Γ̄ ≡ 1

k

∑

k

Γk , (2)

where the index k enumerates the states in a cluster. The
rules for the averaging are natural: The observable quan-
tities are m2

k (as discussed above) and Γk. The data for
M̄ and Γ̄ is presented in the form (“m.” denotes “mean”)

M̄, Γ̄ =m. value±m. square deviation±m. exper. error.

It must be emphasized that the positions of clusters
are very stable due to many states involved. For instance,
above 1.9GeV one can consider only those states from [5]
which have the maximal star rating (rating 4∗ according to
the classification in [5]). These resonances require obser-
vation of 3 or more strong, unmistakable peaks and a very
good mass determination. Their reliability is practically
equivalent to that of states in PDG. There exist 6 such
states in the third cluster and 8 in the fourth one. One
can check that if we consider only these states in the clus-
ters, the positions of the clusters will not change (i.e. the
change will be less than 0.01GeV within our accuracy).

The clusters describe the behavior of the spectrum as
a whole (the relevant discussions for the light non-strange
baryons can be found in ref. [12]). With a good accuracy
they are equidistant, hence, one can parametrize them by
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Fig. 1. The spectrum of light non-strange mesons from refs. [4] and [5] (for the last two clusters) in units ofm2
ρ(770). Experimental

errors are indicated. Circles stay when errors are negligible. Open circles and strips denote the additional states (see text). The
dashed lines mark the mean (mass)2 in each cluster. The absolute values of the masses are given in table 1. The masses of
the lightest states not displayed in table 1 are (in MeV): π: 140; f0: 980± 10; η: 547.75± 0.12; a0: 984.7± 1.2; ρ: 775.8± 0.5;
ω: 782.59± 0.11.

a linear function. For the data in fig. 1 the result of the
fit is

M2(n) = an+ b, n = 1, 2, 3, 4; a ≈ 1.13, b ≈ 0.63, (3)

where M2(n) is the position of the n-th cluster in GeV2.
The slope a in the cluster spectrum (3) is nothing but
the mean slope of radial Regge trajectories. Its numerical
value is within the interval found in [5]: a = 1.14± 0.013.

The parameter b is the mean intercept of the radial Regge
trajectories. In [5,7] this quantity was not estimated, but
for us it is of importance as will be seen below.

Finally, we would like to estimate to what extent the
cluster spectrum in eq. (3) is vitiated if one excludes the
Crystal Barrel data (the last two clusters). Then we have
only two clear-cut clusters. The parametrization of two
points by the linear function can look doubtful, so we will
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Table 1. The masses and widths (in MeV) of the states in fig. 1. Experimental errors are indicated.

m(1) Γ (1) m(2) Γ (2) m(3) Γ (3) m(4) Γ (4)

π 1300± 100 200–600 1812± 14 207± 13 2070± 35 310+100
−50 2360± 25 310+100

−50

f0 1200–1500 200–500 1770± 12 220± 40 2020± 38 405± 40 2337± 14 217± 33

η 1294± 4 55± 5 1760± 11 60± 16 2010+35
−60 270± 60 2285± 20 325± 30

a0 1474± 19 265± 13 2025± 30 300± 25

ρ 1465± 25 400± 60 1720± 20 250± 100
2000± 30
2110± 35

260± 45
230± 50

2265± 40 325± 80

a1 1230± 40 250–600 1647± 22 254± 27
ω 1400–1450 180–250 1670± 30 315± 35 1960± 25 195± 60
f1 1281.8± 0.6 24.1± 1.1 1971± 15 240± 25 2310± 60 255± 70
h1 1170± 20 360± 40 1965± 45 345± 75 2215± 40 325± 55
b1 1229.5± 3.2 142± 9 1960± 35 230± 50 2240± 35 320± 85
π1 1376± 17 300± 40 1653+18

−15 225+45
−28 2013± 25 230± 105

f2 1275± 1 185.1+3.5
−2.6 1638± 6 99+28

−24

1934± 20
2001± 10

271± 25
312± 32

2240± 15
2293± 13

241± 30
216± 37

π2 1672± 3 259± 9 2005± 15 200± 40 2245± 60 320+100
−40

η2 1617± 5 181± 11 2030± 16 205± 18 2267± 14 290± 50
a2 1318.3± 0.6 107± 5 1732± 16 194± 40 2030± 20 205± 30 2255± 20 230± 15

ρ2 1940± 40 155± 40 2225± 35 335+100
−50

ω2 1975± 20 175± 25 2195± 30 225± 40
f3 2048± 8 213± 34 2303± 15 214± 29

ω3 1667± 4 168± 10 1945± 20 115± 22
2255± 15
2285± 60

175± 30
230± 40

ρ3 1688± 2.1 161± 10 1982± 14 188± 24 2260± 20 160± 25

a3 2031± 12 150± 18 2275± 35 350+100
−50

h3 2025± 20 145± 30 2275± 25 190± 45
b3 2032± 12 117± 11 2245± 50 320± 70
π4 2250± 15 215± 25
f4 2018± 6 182± 7 2283± 17 310± 25
ρ4 2230± 25 210± 30

a4 2005+25
−45 180± 30 2255± 40 330+110

−50

η4 2328± 38 240± 90
ω5 2250± 70 320± 95
ρ5 2300± 45 260± 75

M̄ 1325± 89±31 1697±56±12 2004±40±24 2269±37±32

Γ̄ 248±132±57 199±66±29 224±69±38 266±56±53

Γ̄ /M̄ 0.187 0.117 0.112 0.117

consider the ground ρ- and ω-mesons as two non-strange
constituents of the lowest cluster near 0.78GeV. We note
in passing that fit (3) predicts the lowest cluster for n = 0
near 0.79GeV, so our assumption is well justified. We have
then

M2
PDG(n) = an+b, n = 0, 1, 2; a ≈ 1.14, b ≈ 0.61. (4)

Both cluster spectra (3) and (4) turn out to be very close.
Thus, PDG contains enough data to arrive at our con-
clusions. The data of Crystal Barrel provides a dramatic
confirmation for the observed regularities.

Concluding this section we would like to make the fol-
lowing remark. The hypothesis that mesons should appear
as towers of states (which we call clusters, fig. 1 is self-
explanatory in the analogy with towers) was proposed be-
fore QCD [6] for explaining the absence of backward peaks

in π+π−, π+K−, K+K−, and N̄N elastic scattering in
the framework of Regge theory. There was a hope that
further N̄N studies (see reason 3 above) would provide
crucial tests for the existence of these towers. The Crystal
Barrel experiment on p̄p annihilation can be considered as
such a test.

3 Interpretation of data

It is well known that properties of any quantum system
approach to its classical ones while the quantum num-
bers defining the stationary states of this system are large
enough (see, e.g., [13]). In our case these quantum num-
bers are the spin J and the radial excitation number n.
The valent quarks in such hadrons on average have high
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energies and, hence, practically do not “feel” the non-per-
turbative structure of QCD vacuum which is the underly-
ing reason of CSB (see the relevant discussions in [14] and
references therein). The quasiclassical description implies,
in particular, the universal linear string-like behavior of
the meson mass spectrum which can be compactly writ-
ten as

m2(I,G, P,C, L, J, n) ' a(n+ J) + b. (5)

The fact that relation (3) is an experimental result and
that the number of states is indeed growing in clusters
seems to confirm the validity of the quasiclassical treat-
ment. Needless to say that the manifest cluster structure
of high meson excitations includes the full linearly realized
approximate U(2)× U(2) chiral flavor symmetry of QCD
as a particular case. The restoration of this symmetry at
high energies leads to degeneracy inside the chiral mul-
tiplets. Different aspects of the relation between the chi-
ral symmetry restoration in highly excited hadrons and
the parity doubling were widely discussed in the litera-
ture [10,14–19]. It happens, however, that with the same
accuracy the observed mass degeneracy is much higher
than predicted by the restoration of chiral and axial sym-
metries of QCD Lagrangian. Even models of generalized
chiral symmetry like in ref. [16] cannot explain such a
high degeneracy because in the chiral multiplets one has
states with equal spin only. This phenomenon should be
a manifestation of some additional symmetry. If we be-
lieve that all regularities in the spectrum must be related
to the symmetries of QCD, then we have only one possi-
ble candidate: the conformal symmetry. According to the
general principle in the quantum theories discussed at the
beginning of this section, one expects the restoration of
all broken classical symmetries of the QCD Lagrangian in
highly excited states. The conformal invariance is among
the classical symmetries. Consequently, it should be ef-
fectively restored at high energies. Indeed, we know that
QCD is nearly conformal in the ultraviolet region. As dis-
cussed briefly in the introduction, this could be intimately
related with the existence of string dual for QCD. How-
ever, following the arguments given in the introduction,
even without this duality, it is natural to suggest that the
observed degeneracy of the light non-strange mesons is a
combined effect of a partial restoration of chiral and con-
formal symmetries at high energies.

Unlike the case of chiral invariance, where the complete
restoration is possible in the spectrum (i.e. the complete
parity doubling), we cannot observe in the spectrum the
complete restoration of conformal invariance, which could
mean the ideal degeneracy of states with different spin in-
side a cluster, like in the string theories of Veneziano type.
In QCD the existence of hadrons at discrete energies is in-
compatible with the absence of scale in the problem. What
we can observe is only approaching to that regime. Finally,
the resonances disappear and the scale-invariant contin-
uum sets in. Thus, the approaching to the perturbative
continuum and the grouping of resonances into clusters
seem to be tightly related.

As seen qualitatively from fig. 1 and numerically from
table 1 the higher are the resonances one considers the

more clear-cut clusters they form. Let us estimate the rate
of clustering. In doing this certain care should be exer-
cised. This procedure makes sense only if the deviations
from the averaged values are substantially larger than the
corresponding experimental errors. As seen from table 1
this is indeed the case for the first and second clusters,
where the deviations are by a factor of 3–4 larger than
the averaged experimental errors. For the third cluster
the difference is by a factor of 2 only, while for the fourth
one there is practically no difference at all. Thus, only the
first two clusters (the PDG data) can serve for our pur-
pose more or less reliably. The Crystal Barrel data will be
used for a qualitative check.

The equidistant cluster spectrum with deviations can
be written in the form

M(n) =
√
an+ b± δ(n). (6)

Now we should interpolate the deviation δ(n) by some
smooth function. A priori we have no theoretical idea how
this function should look like. In the literature there exist
some arguments for the rate of chiral symmetry restora-
tion only. Namely, in [17,19] the deviations were argued
to be exponential, while in [14] a polynomial minimal rate
was derived. We will consider both possibilities for δ(n),

δe(n) ∼
e−βen

√
n+ 1

, δp(n) ∼ (n+ 1)−βpn. (7)

Here in the first ansatz we introduced the square root in
order to have a purely exponential correction for the mass
squared. Taking the corresponding values for the first two
clusters in table 1, δ(1) ≈ 89MeV, δ(2) ≈ 56MeV, one
arrives at the following estimates:

βe ≈ 0.26, βp ≈ 1.14. (8)

The resulting predictions for the exponential and poly-
nomial deviations are (in MeV): δe(3) ≈ 37, δe(4) ≈ 26,
δp(3) ≈ 40, δp(4) ≈ 31, while experimentally δ(3) ≈ 40,
δ(4) ≈ 37. It is seen that the polynomial ansatz works
slightly better. The modern level of experimental accu-
racy, however, does not allow to indicate convincingly
which ansatz is really preferable.

Let us speculate about the physical sense of these es-
timates. If the partial restoration of conformal invariance
indeed takes place, then the obtained results can be con-
sidered as a rough estimate for the rate of this restoration.
On the other hand, they may be regarded as an estimate
for the minimal rate of the chiral symmetry restoration
in excited hadrons. Obviously, in particular channels this
effect can occur faster. For instance, the fits in [17] yield
βe ≈ 1, while for the polynomial ansatz there exist an es-
timate for the scalar channels [14], βp & 1.5. In any case
it should be noted that although the estimation of this
rate is still a rather controversial problem, the effect of
chiral symmetry restoration in highly excited states per
se seems to be now well settled both experimentally and
theoretically.

In principle, one can try to give some alternative ex-
planations of experimental data, say, for parity doubling.
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For instance, it may be that at high energies the influ-
ence of CSB ceases to depend on the quantum numbers
of concrete channel, but the strong CSB persists at all en-
ergies, just higher excitations “feel” its presence equally.
Or it may be that the mass degeneracy is just an effect of
vanishing spin-orbit forces in quark interactions as it was
proposed for light baryons in ref. [20]. Some independent
tests are needed.

Actually, such a test can be provided by the results
of some recent papers. Due to the observed universal-
ity of spectra expressed by the existence of clusters (3)
it seems to be sufficient to check the situation for some
channels only. The channels with J = 1 are good can-
didates for our purpose because the problem can be di-
rectly addressed in these cases within the QCD sum rules
in the planar limit. Since the spectrum is linear with a
good accuracy, one can saturate the sum rules by the lin-
ear ansatz for the masses. As it was noted in [17,18] and
developed in [19], if the chiral symmetry is not broken
(which is equivalent to the absence of the weak pion de-
cay constant and the quark condensate) then the linear
spectrum turns out to be: M 2(n) = a(n+1/2). For J = 1
mesons this relation is a consequence of the absence of the
gauge-invariant local dimension-two gluon condensate. If
the CSB is present at any energy then the intercept should
be substantially larger, e.g., in ref. [18] it was obtained for
this case M2(n) = a(n + 1). Experimentally, one has for
J = 1 clusters: m2(n) ≈ a(n+ 0.51) with a ≈ 1.13GeV2.
Consequently, the experimental spectrum on average fa-
vors the chirally symmetric pattern, i.e. it reveals a strong
supression of CSB effects for high excitations where the
linear behavior sets in. For the experimental spectrum (3)
one obtains m2(n) ≈ a(n + 0.55) with the same slope.
Thus, the universality works remarkably well providing a
solid ground for the extension of the conclusion to the
whole spectrum.

Finally, let us consider the states f0(980) and a0(980)
the nature of which is a subject of many discussions in
the literature. A large amount of phenomenological argu-
ments (see ref. [21] and references therein) indicates that
these mesons are genuine n̄n states with a large admixture
of s̄s component which shifts their masses almost to the
K̄K threshold. The analysis of different reactions (see [21]
for references) yields the estimation of the strange com-
ponent in f0(980) to be about 60–70%. In fact, this esti-
mate can be easily obtained theoretically. After the CSB
the ground vector-isovector meson and the ground scalar-
isoscalar meson practically do not mix [22]. If the latter
state is f0(980) then we should have m2

ρ = m2
f0
. Since the

ρ-meson is a pure n̄n state, the estimation of s̄s admix-
ture in f0(980) follows immediately: (m2

f0
−m2

ρ)/m
2
ρ ≈ 0.6

(we remind that in all relevant formulae one deals with
(masses)2). The situation with a0(980) happens to be sim-
ilar. Such an estimation does not give any insight into
the mechanism of this admixture and it may be that for
f0(980) and a0(980) this mechanism is different. It only
shows that numerically it is consistent with the hypothe-
sis that these mesons are genuine quark-antiquark ground
scalar states. Thus, if the strange quarks were “switched

off” the lowest cluster at about 0.78GeV would consist
of four mesons: ρ(770), ω(782), f0(980) and a0(980) (that
is why the last two particles have been included into our
analysis). As noted above, this cluster is in good agree-
ment with the spectrum (3) for n = 0.

4 Analysis of decay widths

The clusters of meson states have not only stable positions
at some equidistant values of energy, but also stable mean
decay widths. They are shown in table 1. What do they
tell us about? In the given section we address ourselves to
this question.

It is widely believed that the light mesons can be
considered as an effective hadron string with relativistic
quarks at the ends. The conjecture is that a flux tube of
the chromoelectric field between a quark and an antiquark
can be effectively described as a string. On the basis of
such a simple qualitative picture the following behaviour
for the full decay width was predicted [23]: Γ (n) = Bm(n),
with B = O(1/Nc) being a universal constant. Originally,
this relation was derived for highly excited states, where
a quasiclassical treatment can be applied. With this re-
sult at hand, let us consider the behaviour of the mean
width in the clusters, namely introduce the number B(N)
defined as,

B(N) ≡ Γ̄ (N)

M̄(N)
. (9)

For N = 1, 2, 3, 4 the corresponding values are given in
table 1.

It is desirable to have an estimate for B(0) as well.
Here one must exercise certain care because the averaging
of widths for the ground states should not be the same as
for the excited ones. First of all, we do not consider the
mesons f0(980) and a0(980) because a large admixture of
the strange quark in these states is expected to change dra-
matically their widths. Although above we have presented
an argument why these states can be considered as the
members of the lowest cluster in the analysis of the mass
spectrum, this hardly can be done for the widths. Second,
the full width of the ω(782)-meson, Γ = 8.49± 0.08MeV,
is almost by 18 times less than that of the ρ(770)-meson,
Γ = 150.3 ± 1.6MeV. The flavour symmetry predicts an
approximate mass degeneracy for these states, but this
is emphatically not the case for their widths. The reason
is that the decay ω → ππ is strongly suppressed for the
flavour singlet and the dominant decay is ω → πππ. The
latter has much less phase space. Its first radial excita-
tion, the ω(1420)-meson, avoids this by decaying into ρπ.
This phenomenon has nothing to do with our subject and,
hence, we have to exclude the ω-meson from the averaging.
Finally, we have only the ρ-meson, which gives

B(0) = Γρ/mρ = 0.194. (10)

It is interesting to note that this number was proposed
in [24] as an educated guess in order to estimate the con-
stant B in the real world. Surprisingly enough, it turned
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out to be very close to a numerical estimate for B in the
’t Hooft model (QCD in two dimensions in the large-Nc

limit, see [25]) performed in [26].
Finally, our analysis yields the following estimates (see

table 1):

B(0) ≈ B(1) ≈ 0.2, B(2) ≈ B(3) ≈ B(4) ≈ 0.1. (11)

Thus, the educated guess made in [24] turns out to be cor-
rect for the next cluster (N = 1) as well. However, then
one observes a sudden jump down by about 2 times. The
Crystal Barrel Data, which was used to estimate B(3) and
B(4), dramatically confirms this jump. How can we inter-
pret this phenomenon? Looking at the states in clusters
more attentively, one can make the following observations:
a) the N = 1 cluster mainly consists of the ground states;
b) the mesons in the N = 0, 1 clusters prefer to decay into
two particles [4]; c) the mesons in theN > 1 clusters prefer
to decay into three or four particles [4]. The nature of the
phenomenon c) is enigmatic, at least for the author. This
very phenomenon leads to a suppression of the available
phase space for the decays. But how can one understand
this within the effective hadron string? In the simplest
case of open string one could assume, for instance, that
the string breaks in two points simultaneously, produc-
ing three final particles. This is an O(1/N 2

c ) effect. The
question arises, why this effect might become dominant?
A more plausible assumption is that the string decay is a
cascade process for the excited states. Experimentally, one
cannot detect the intermediate stages of this process. The
universal quantity B is somehow decreased in this case.

Thus, the stability of numbers in eq. (11) supports the
possibility of the effective string description. However, the
experiment seems to tell us that this description for the
excited states should be different from that of the ground
states, at least with respect to the issue of string decays.

Last but not least. If one considers the individual chan-
nels, the result (11) hardly can be detected. In this respect
the t’ Hooft model provides an instructive example. It has
so little degrees of freedom for exciting the bound states
that each cluster consists of one state only. As a result, the
quantity B(n) has seemingly random fluctuations around
a constant value, which is clearly seen when one computes
the widths for several hundreds of radial excitations [24,
26]. Dealing with the first several states, this asymptotic
value cannot be guessed at all. In four dimensions we are
more lucky. The multitude of states in each cluster smooth
significantly these fluctuations after the averaging. Due to
this effect already a few clusters are able to provide the
asymptotic value for B.

5 Conclusions

Our analysis shows that the available experimental spec-
trum of light non-strange mesons reveals the universal
string-like behavior expressed by eq. (5) and, on average,
a strong suppression of chiral symmetry breaking effects
for sufficiently high resonances. The observed degeneracy

of the spectrum, however, cannot be explained by effec-
tive restoration of the chiral and axial symmetries only.
A possible explanation is that a partial restoration of the
conformal invariance happens simultaneously.

Independently of interpretation, the modern experi-
mental data seems to point out two remarkable facts [27],
which hold on average for the high excitations of light
non-strange mesons. First, the spectrum globally behaves
as that of the Lovelace-Shapiro dual amplitude (the inter-
cept is the half of the slope). Second, the full decay width
is proportional to the mass of decaying particle, just as
expected within various string models.

New systematic experiments for the search of light
non-strange hadrons above 1.9GeV are indispensable. Un-
fortunately, at present such experiments are not very wi-
despread because they are not expected to bring a new
physics. The analysis carried out in the paper is, in a
sense, an attempt to overcome this prejudice. The detailed
knowledge of the experimental spectrum for high meson
excitations can help significantly to answer some funda-
mental questions and, hence, to extend our understanding
of QCD.
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